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ABSTRACT

An elementary kinematic model for emission produced by relativistic spherical colliding shells is studied. The
case of a uniform blast-wave shell with jet opening angle �j 31=� is considered, where � is the Lorentz factor of
the emitting shell. The shell, with comoving width�r 0, is assumed to be illuminated for a comoving time�t 0 and to
radiate a broken–power-law �L� spectrum peaking at comoving photon energy �0pk;0. Synthetic gamma-ray burst
(GRB) pulses are calculated, and the relation between energy flux and internal comoving energy density is
quantified. Curvature effects dictate that the measured �F� flux at the measured peak photon energy �pk be
proportional to �3pk in the declining phase of a GRB pulse. Possible reasons for discrepancies with observations
are discussed, including adiabatic and radiative cooling processes that extend the decay timescale, a nonuniform jet,
and the formation of pulses by external shock processes. A prediction of a correlation between prompt emission
properties and times of the optical afterglow beaming breaks is made for a cooling model, which can be tested with
Swift.

Subject headinggs: gamma rays: bursts — gamma rays: theory — radiation mechanisms: nonthermal

1. INTRODUCTION

In the collapsar scenario for gamma-ray bursts (GRBs),
pulses in GRB light curves are thought to be produced by
collisions between relativistic shells ejected from a central
engine (see Zhang & Mészáros 2004 for a recent review). The
interception of a more slowly moving shell by a second shell
that is ejected at a later time, but with faster speed and larger
Lorentz factor, produces a shock that dissipates internal en-
ergy to energize the particles that emit the GRB radiation.
This scenario is widely considered to explain pulses in GRB
light curves (Kobayashi et al. 1997; Daigne & Mochkovitch
1998). Studies of pulses are important for deciding whether
GRB sources require engines that are long-lasting or impul-
sive (Dermer & Mitman 2004), with important implications
for the nature of the central engine, which is often argued to
be a newly formed black hole powered by the accretion of a
massive, dense torus.

Here we construct an elementary kinematic model for col-
liding shells, assumed spherical and uniform within jet opening
angle �j. This is the sort of jet that Frail et al. (2001) discuss
regarding the standard energy reservoir result, where jet open-
ing angles are inferred from the time of achromatic spectral
breaks in optical afterglow light curves.

We also perform this study in order to quantify the curvature
constraint of a spherically emitting shell traveling with bulk
Lorentz factor �, which implies that the shell radius

r � 2�2ctvar=(1þ z) ð1Þ

in order to produce variability on timescale tvar (Rybicki &
Lightman 1979; Fenimore et al. 1996). This study also quan-
tifies both the rate at which flux decays at a given energy as a
result of curvature effects and the range of validity of the ap-
proximate relation

�E ffi cr2u00�
2
�
d2L ð2Þ

between internal comoving energy density u00 and observed
energy flux �E, where dL is the luminosity distance (see Ap-
pendix A). The accuracy of this relation is important in quan-
tifying �� opacity constraints (Lithwick & Sari 2001; Dermer
2004) applied to GRB pulses as measured with the GRB
monitor and Large Area Detector on GLAST,1 as well as in
making estimates of photomeson production in GRB blast
waves (Waxman & Bahcall 1997).
If curvature effects dominate the late-time emission in GRB

pulses, then a unique relation is found whereby the value of the
�F� peak flux f�pk (in cgs units of ergs cm

�2 s�1) at peak photon
energy �pk decays /�3pk. This relation is generally not observed
in long, smooth GRB pulses studied by Borgonovo & Ryde
(2001), who find power-law decays f�pk / ��pk, with 0:6P �P 3.
Remarkably, values of � for different pulses within the same
GRB are confined to a rather narrow band. The wide range of
values of � is found not only in multipeaked GRBs, but also in
single-peaked GRBs that display smooth fast-rise, slow-decay
light curves (Borgonovo & Ryde 2001; Ryde & Petrosian
2002). The smooth single-peak GRBs could arise from curva-
ture effects (Fenimore et al. 1996) or external shocks (Dermer
et al. 1999a). For GRB pulses that could be produced by
spherically symmetric shell collisions, the discrepancy with
observations suggest a breakdown of our assumptions.
In the next section, the kinematic model is presented. Cal-

culations based on this model are presented in x 3. In x 4, we
discuss the possibility that radiative cooling effects produce the
power-law relation, implying a prediction that can be tested
with Swift.2 Alternately, the uniform spherical shell assumption
could break down, or the basic model of colliding shells could
be in error. The appendices give derivations of simple, widely
used approximations related to this study, a derivation of the
curvature relation f�pk / �3pk, and an analytic form for the time-
dependent pulse profile, leading to a simple expression for the

1 See http://glast.gsfc.nasa.gov.
2 See http://swift.gsfc.nasa.gov.

284

The Astrophysical Journal, 614:284–292, 2004 October 10

# 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A.



light curve of a pulse in the curvature limit. A brief summary is
given in x 5.

2. KINEMATIC MODEL

A simple kinematic model for the received flux from the
illumination of a spherically symmetric shell resulting from
shell collisions is studied. A shell with finite width is assumed
to be uniformly illuminated throughout its volume for a fixed
duration during which the shell travels with constant speed
from the explosion center. Light-travel time and Doppler
effects are treated without regard to details of the energization
and cooling of the radiating particles. This approach gives
kinematic expectations of curvature effects in a GRB colliding
shell system.

The �F� flux measured at dimensionless photon energy � ¼
h�=mec

2 and time t is given by

f�(t)¼
1

d2L

Z 2�

0

d�

Z 1

�1

d�

Z 1

0

dr r2 	3D(r)

; �0j0 �0; �0; �0; r; t 0ð Þ; ð3Þ

where primes refer to comoving quantities, the integration is
over volume in the stationary (explosion) frame, the Doppler
factor

	D ¼ 1

�(1� 
�)
; ð4Þ


 ¼ 1� 1=�2
� �1=2

, and �0 ¼ (1þ z)�=	D [see Granot et al.
1999, noting the correction of a (1þ z) factor in the relation
between the emitted and received photon frequencies]. The
emissivity

j� ��; ��ð Þ ¼ dE�

dV� dt� d�� d��
¼ 	2D j0 �0; �0ð Þ;

where � ¼ �� is the directional vector �; �ð Þ, �0 ¼ (�� 
 )=
(1� 
�), and �0 ¼ �. We use a notation in which asterisks
refer to quantities in the stationary frame (although we have
dropped asterisks for the spatial variables r and �) and un-
scripted quantities refer to the observer frame.

The blast wave is assumed to emit isotropically in the co-
moving frame, which could apply to synchrotron and synchro-
tron self-Compton processes with randomly ordered magnetic
fields and electron pitch-angle distributions, but not to exter-
nal Compton processes. Moreover, the observer is assumed
to be located along the azimuthal symmetry axis of the jet, or
to be viewing a uniform jet with opening angle �j 31=�.
Therefore,

f�(t)¼
1

2d 2
L

Z 1

�1

d� 	3D

Z 1

0

dr r 2�0j0 �0; r; t 0ð Þ; ð5Þ

noting that 	D(r) ¼ 	D for a uniform jet. The emissivity is
related to the internal energy density u� 0 r; t 0ð Þ through the
relation

�0j0 �0; r; t 0ð Þ ffi cu� 0 r; t 0ð Þ
�r 0

; ð6Þ

where �r 0 ¼ ��r is the proper shell width and the mean
escape time of photons from the shell volume is approximated
by �r 0=c.

Further consider a uniform jet with no angular dependence
other than that the emission goes to zero at � � �j ¼ arccos�j.
The emitting shell is assumed to be illuminated for the
comoving duration t 00 � t 0 � t 00 þ�t 0. The spectrum is ap-
proximated by a broken power law with peak �L� flux at en-
ergy �0pk, given by the expression

u� 0 r; t 0ð Þ ¼ u00H t 0; t 00; t 00 þ�t 0
� �

xaH(1� x)þ xbH(x� 1)
� �

;

ð7Þ

where H are the Heaviside functions, a (>0) and b (<0) are
the �L� indices, and x ¼ �0=�0pk;0 ¼ (1þ z)�=	D�

0
pk;0. The peak

�F� comoving photon energy �0pk;0 is also supposed to be
constant throughout the shell. The total integrated photon en-
ergy density for this spectrum is u0tot ¼ u00 a�1 � b�1ð Þ.

The observing time t is related to the emitting time mea-
sured in the stationary explosion frame through the relation

tz ¼
t

1þ z
¼ t� �

r�

c
: ð8Þ

The zero of time t� ¼ 0 corresponds to the moment of shell
ejection, with the location of the inner edge of the shell given
by the relation ri t�ð Þ ¼ 
ct�. The first moment of shell illu-
mination takes place when the inner edge of the shell is at
radius r0 ¼ 
ct�0 ¼ 
�ct 00 for a shell moving with constant
speed �.

The finite shell width and finite duration of the illumination
implies two constraints on the integrations over r and �. The
shell-width constraint 
ct� � r � 
ct� þ�r implies that


ctz
1� 
�

� r � 
ctz þ�r

1� 
�
: ð9Þ

Because of light-travel time effects of the relativistically
moving shell, values of r contributing to the signal observed at
time tz extend over a range �r=(1� 
�)��2�r (Rees 1966;
Granot et al. 1999).

The illumination constraint t 00 � t 0 ¼ t�=� � t 00 þ�t 0 implies
that

1

�

r0



� ctz

� �
� r � 1

�

r0



� ctz þ c��t 0

� �
: ð10Þ

The zero of observer time is when a hypothetical photon
ejected at t� ¼ 0 and r ¼ 0 from the inner edge of the shell
would reach the observer. The time at which the signal is first
detected by the observer is therefore given by

t initz ¼ 1� 
ð Þr0 ��r


c
! r0

2�2c
� �r

c

� �
;

and the observing time at which a photon emitted from the
inner edge of the shell at the first instant of shell illumination
reaches the observer is tz0 ¼ r0(1� 
 )=
c ! r0=2�

2c. The
final expressions in these last two relations hold in the limit
�31. Hence,

f�(t)¼
cu00

6d 2
L�r 0

Z 1

�j

d� 	3D r3u � r3l
� �

xaH(1� x)þ xbH(x� 1)
� �

;

ð11Þ
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where

rl ¼ max

ctz

1� 
�
;
r0=
 � ctz

�

� �

and

ru ¼ min

ctz þ�r

1� 
�
;
r0=
 � ctz þ c��t 0

�

� �
:

3. CALCULATIONS

We examine the accuracy of the approximate expressions
relating r and tvar (eq. [1]) and energy flux and internal energy
density (eq. [2]; see Appendix A). Let tf represent a fiducial
variability timescale for the observer. We introduce radius,
time, and width parameters, denoted by �r, �t, and ��, respec-
tively, to relate tf to source-frame quantities. The curvature
constraint for the blast-wave radius suggests that we write

r ¼ 2�r�
2ctf =(1þ z): ð12Þ

Because dt 0 ¼ 	D dt=(1þ z), we define

�t 0 ¼ 2��t tf =(1þ z) ð13Þ

to relate the intrinsic variability timescale �t 0 in the comoving
frame to tf . The comoving width of the emitting region �r 0P
�t 0=c, by causality requirements (if it were larger, then large-
amplitude variability would not be possible except for random
statistical fluctuations). Thus, we define

�r 0 ¼ 2���ctf =(1þ z); ð14Þ

with the causal requirement ��P �t. When �r 0Tc�t 0, the
duration of the emitting region is not determined by its causal
size scale, but rather by the duration of emission radiated from
a region much smaller than �t 0=c.

We solve equation (11) for the following standard parame-
ters: � ¼ 300; z ¼ 1 (so that dL ¼ 2:02 ; 1028 cm for a �CDM
cosmology with �m ¼ 0:27, �� ¼ 0:73, and a Hubble constant
of 72 km s�1 Mpc�1, as implied by theWMAP results [Spergel
et al. 2003]); �0pk;0 ¼ (1þ z)�pk;0=2� with �pk;0 ¼ 1 (i.e., peak

photon energy at the beginning of the pulse equal to 511 keV);
u00 ¼ 1 ergs cm�3; a ¼ 4=3; b ¼ �1=2; and tf ¼ 1 s.
Figure 1 shows the appearance of a kinematic pulse with

�r ¼ �t ¼ �� ¼ 1 at a number of photon energies. Also shown
in Figure 1 are kinematic pulses formed when �t ¼ �� ¼ 1 and
�r ¼ 0:1. Note the characteristic rounded, weakly asymmetric
(on a linear scale) light curve shapes that are formed when
�r 0 ffi c�t 0. Time delays from different parts of the width of
the emitting shell are important to determine the pulse shape in
this case. The smaller emitting volume when the shell is en-
ergized at 0:1r0 rather than at r0 produces a pulse with a fluence
smaller by a factor ofR ��r0þc��t 0

��r0
dr r 2R r0þc��t 0

r0
dr r 2

�
R ��r0þr0
��r0

dr r 2R 2r0
r0

dr r 2
� 1:13 � 0:13

8� 1
ffi 1

7
:

Indeed, 1/7 is the asymptotic limit of the fluence reductions due
to the different volumes illuminated by flares lasting for equal
proper times, but in one case emerging from deep within the jet
and in the other case with the illumination beginning at the
location r0 ffi 2�2ctf =(1þ z). The intrinsic duration of the
pulse, when combined with the curvature effects, results in a
pulse with FWHM duration of �2 s, as compared with the
fiducial timescale of 1 s. Thus, the combined width, duration,
and (off-axis) curvature effects have lengthened the basic
timescale by a factor of about 2 at � ffi �pk;0, with a narrower
FWHM duration when �k �pk;0 and a broader FWHM duration
when �P �pk;0.
Figure 2 shows the evolution of the spectral energy distri-

bution for this pulse. Note the rapid decay/�3pk of the �F� peak
flux f�pk measured at �pk during the decay portion of the pulse.
This behavior is characteristic of all pulses in which curvature
effects from off-axis emitting regions dominate the late-time
behavior of the light curve.
Figure 3 shows characteristic light curves when �r 0T

c�t 0, that is, when the shell is very thin compared with the size
scale associated with the intrinsic pulse duration. These light
curves exhibit pulses that have much sharper peaks than in
the general case of Figure 1 and that are asymmetrical with a
distinct trailing edge of emission. The fluence contained in the
pulse is the same as in the pulse of Figure 1 with �r ¼ 1, but
the FWHM pulse duration at � ¼ 1 is �1 s, comparable to tf ,

Fig. 1.—Light curves of a causal pulse at different dimensionless observing
energies for a model with standard parameters (see text) and �r ¼ �t ¼ �� ¼ 1.
Also indicated by the arrows are light curves at � ¼ 0:1, 1.0, and 10 for a model
with �t ¼ �� ¼ 1 and �r ¼ 0:1.

Fig. 2.—Evolution of the spectral energy distribution due to curvature
effects for a model with standard parameters (see text). In the declining phase
of the pulse, f�pk / �3pk, as indicated by the dashed line.
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while the peak flux is about twice as large, as a result of the
different geometry. The difference in the geometries of causal
and thin-shell pulses introduces a physical effect required for
accurate calculations of scattering or opacity processes in GRB
blast waves. When �r 0 � c�t 0, then the photon field can be
considered to be roughly isotropic for scattering and opacity
calculations. But when the shell radiates for a much longer time
than it takes light to cross the width of the shell, that is, when
�t 0 3�r 0=c, the geometry of the outflowing photon flux is
much more anisotropic, giving higher thresholds and lower
rates for �� and photohadronic processes as a result of the
reduction in the frequency of head-on collisions.

Figure 4 shows the characteristic light-curve shapes formed
when curvature effects dominate the temporal evolution of
the light curve (Fenimore et al. 1996). Here the pulses are very
asymmetric, with a sharp leading edge. In this calculation,
�r ¼ 1 and �� ¼ �t ¼ 0:1. The peak �F� flux at � ¼ 1 reaches a
value of only 1:4 ;10�11 ergs s�1 with a duration of �0.4 s.
The total energy released is smaller by a factor of 10 than in the
case shown in Figures 1 and 2 with �r ¼ 1, as a result of the
shorter intrinsic pulse duration.

The bottom panel in Figure 4 shows, in a log-log relation,
that the flux decays as t�3þb at � > �pk. When � < �pk, the flux
decays as t�3þa at early times, breaking to a t�3þb behavior at
late times because of curvature effects.

The spectral and temporal behavior of the curvature pulse
can be derived in the 	-function approximation (not to be con-
fused with the Doppler factor 	D). If we let

�0j0 �0; r; t 0ð Þ / �0a	 r 0 � r0ð Þ	 t 0 � t 00
� �

¼ �0a	 r � r0ð Þ	 t � (1þ z)t 00
	D

� 	

in equation (5) and use the invariance of the 4-volume, then

f�(t) /
r 20
2d 2

L

� a
Z

d(1� 
�) 	3�a
D 	 (1� 
�)� tz

�t 00

� 	

/ �a

ctz
r0

� ��3þa

/ �a

ctz
r0

� ��2��

; ð15Þ

where t 00 ¼ r0=
�c and � is the energy index. [This result cor-
rects the expressions given by Fenimore et al. 1996 and Ryde

& Petrosian 2002, where the 	-function pulse in time, 	 t 0 � t 00
� �

,
is not transformed between the comoving and observer frames.]
The dependence in equation (15) is derived more carefully in
Appendix B, and analytic forms for the pulse profile, includ-
ing a simple functional form for the pulse profile in the cur-
vature limit, are derived in Appendix C.

4. DISCUSSION

The estimate L ffi 4�d2L�E ffi 4�r20cu
0
0�

2, where the received
flux is intensified by 2 powers of � for the relativistic time
contraction and photon energy enhancement in a blast-wave ge-
ometry, is generally used to relate bolometric energy flux and
internal energy density (Appendix A). More remarkably, the
allowed radius of the radiating spherical shell is �2�2 times
larger than inferred through causality arguments applied to the
measured variability timescale. This effect greatly dilutes the
comoving photon density compared with that of a stationary
emitting region and essentially explains the unusual properties
of GRBs. In total, we see that

�E ffi cr 20u
0
0�

2

d 2
L

¼ 4c3t2var

(1þ z)2d 2
L

u00�
6 / u00�

6: ð16Þ

For the nominal parameters used in the figures, �E ffi 4:8 ;
10�11t2varu

0
0�

6
300 ergs cm

�2 s�1, where tvar is in seconds and u00
is in units of ergs cm�3.

Fig. 4.—Light curves of a curvature pulse at different dimensionless ob-
serving photon energies for a model with �r ¼ 1, but with �� ¼ �t ¼ 0:1.

Fig. 3.—Light curves of a thin-shell pulse at different dimensionless ob-
serving photon energies for a model with �r ¼ �t ¼ 1 and �� ¼ 0:1, so that
the shell width �r 0 ¼ 0:1�t 0=c.
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The most rigorous limits on �� attenuation are obtained by
determining the minimum value of the product u00�t 0 that can
produce a pulse with a measured peak flux f�pk and full width at
half-maximum (FWHM) duration t1=2 for a given value of �. It
is the product u00�t 0 that enters into the �� attenuation (and
photomeson) calculations. If the shell is found to be optically
thick at some photon energy for a given value of � even in this
case, then � must be larger if photons with the corresponding
energies are detected.

Inspection of the various cases shows that the pulse formed
in the curvature limit produces the brightest measured flux and
shortest duration for a given value of the product u00�t 0. This is
because the measured duration is due entirely to curvature
effects, and the radiated energy is compressed into the shortest
duration and brightest pulse in this limit. From the results of
Appendices C and D, this implies that the expression

u00�t 0 ffi
�
21=ð3�aÞ � 1

�
(1þ z)d 2

L f�pk

8c3�5t1=2
ð17Þ

gives the smallest possible values for u00c�t 0, and this expres-
sion will therefore yield the most reliable minimum Lorentz
factors for �� attenuation calculations derived from GLAST or
ground-based air Cerenkov telescope observations. The corre-
sponding expression for the comoving photon spectral energy
density is thus

u0� 0 ffi
0:26(1þ z)d 2

L f�pk

8c3�5t1=2�t 0
xaH(1� x)þ xbH(x� 1)
� �

; ð18Þ

where t1=2 is determined at photon energies near the peak of the
�F� spectrum. Equation (18) is a factor of 3 smaller than the
expression used for a comoving spherical blob with 	 ! � and
tvar ! t1=2 (see eq. [2] in Dermer 2004).

Three generic types of pulses have been identified for the
simple kinematic pulse, namely, the curvature case, in which
r0 3 c��t 0, the causal case, in which r0 � ��r 0 � c��t 0, and
the thin shell case, in which �r 0Tc�t 0. In all three types of
kinematic pulses, curvature effects dominate the formation of
the spectrum at late time t3 (1þ z)�t 0=2�, so that f�pk / �3pk if
curvature effects dominate pulse formation at late times.

The curvature relationship can be derived from a simple
scaling argument by noting that the differential stationary-
frame shell volume that contributes to the received flux, given
by dV ¼ 2�r 20�r d�, remains constant with time. This is be-
cause the relation between reception time t and � for a shell that
is instantaneously illuminated at comoving time t 00 is t ¼
(1þ z)�t 00(1� 
�), so that d� / dt. The �F� flux

f� ¼
	4DL

0

4�d 2
L

¼ 	4DV
0�0j �0ð Þ

4�d 2
L

¼ 	3DV �
0j �0ð Þ

4�d 2
L

;

where L0 is the comoving luminosity of the emitting volume
that contributes to the flux at time t. For an emission spectrum
that is flat, that is, �0j(�0) / �00, f�pk / �3pk, because �pk / 	 for a
uniform shell.

Analysis of BATSE GRB light curves (Borgonovo & Ryde
2001) shows that the peak fluxes of a GRB pulse generally
follow a relation whereby

f�pk / ��pk: ð19Þ

Values of � for different GRBs vary over a wide range from
�0.6 to 3, with values of � roughly constant for pulses within
the same GRB or in a GRB consisting of a single smooth
pulse. In most GRBs, therefore, curvature effects do not
make a large contribution to the decay phase of a GRB light
curve.
An interesting question is the source of the difference be-

tween observations and our kinematic model pulses. One pos-
sibility is that the jet has angular structure and varies with
directional energy release and baryon loading on angles � of a
few times ��1. The angle-dependent speeds in such a system
would produce a deformed, colliding, shocked-fluid shell in
which the spherical symmetry assumption fails, as therefore
would the uniform jet model. If this is the case, then GRB
prompt emission data can in principle be analyzed to reveal
shell structure and to determine whether this behavior is con-
sistent with a universal jet structure (Zhang et al. 2004; see
Frail 2004 for a review).
Rather than treat these geometrical effects here, we con-

sider instead whether radiation effects could form a power-
law relation between f�pk and �pk. The most naive system
considers a fixed volume of shocked fluid within which the
peak of the �F� spectrum is made by a large population of
quasi-monoenergetic electrons that radiates most of the power
through the synchrotron process in a mean magnetic field of
strength B. If these electrons mainly have comoving Lorentz
factors �, then their luminous power is /B2�2. Because the
peak of the �F� spectrum is /B�2, and assuming that B is
constant, then f�pk / �pk or �syn ¼ 1 for this simple synchrotron
model with constant magnetic field. This model can therefore
only apply in rare cases.
A better treatment must consider the evolution of � due to

synchrotron and adiabatic losses in the expanding shell. The
equation of electron energy evolution is given by

� d�

dt 0
¼ 1

V 0
sh

dV 0
sh

dt 0
�

3
þ TB

2 t 0ð Þ
6�mec

� 2; ð20Þ

where the comoving shell volume changes with time according
to V 0

sh / t 03m, with m ¼ 0 corresponding to no expansion, and
m ¼ 1 corresponding to three-dimensional expansion.
The magnetic field will also change as a result of the ex-

pansion of the shell volume. In the flux-freezing limit where the
magnetic field is randomly oriented, BR2 / constant, imply-
ing that B / V

02=3
sh / t 0�2m. The well-ordered magnetic field re-

quired to explain the polarization observation of GRB 021206
observed with RHESSI (Coburn & Boggs 2003) suggests that
there is not an efficient mixing and randomization of the mag-
netic field directions. For simplicity, we therefore write B /
t 0�2vm, where v ¼1 gives the flux-freezing limit.
Equation (20) becomes

� d�

d�
¼ m

�

�
þ �0�

�4vm�2; ð21Þ

where � � 1 is a dimensionless time variable and �0 is a di-
mensionless synchrotron energy loss rate. Equation (21) is
analytic, but it is sufficient to consider two limiting cases of
dominant adiabatic losses or dominant synchrotron losses at
late times. In the case of dominant adiabatic losses we have
(dropping the primes) � / t�m, B / t�2vm, and �pk / t�2mð1þvÞ ,
so that f�pk=�pk /B / �

v=ðvþ1Þ
pk

. Thus, �adi ¼ 1þ v=(vþ1). Even
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for a wide range of values of v, 1P �adiP 2, and �adi is in-
dependent of the geometry factor m.

If synchrotron losses dominate the cooling, �d�=dt /
B2�2. The dependence B / t�2vm therefore implies � / t 4vm�1,
so that �pk / B�2 / t 6vm�2. Hence, f�pk=�pk / B / �

vm=ð1�3vmÞ
pk

,
so that �syn ¼ 1þ vm= 1� 3vmð Þ. Except when vT1, �syn � 1
when m ¼ 0 and �syn � 0:5 0:67 when m ¼ 1. In this simple
model, therefore, values of � between 1/2 and 2/3 are only
possible for three-dimensional expansion.

Three-dimensional expansion is more likely to occur for
narrowly collimated blast waves than for blast waves with
large opening angles, and the narrowly collimated blast waves
would have ‘‘beaming breaks’’ in the optical afterglow light
curves at earlier times. If we conjecture that the f�pk /�pk rela-
tionships are due to synchrotron and adiabatic effects in GRB
blast waves with different opening angles, then those blast
waves with � < 1 should be correlated with earlier beaming
break times. Because this effect is only seen when synchro-
tron losses dominate the cooling, GRBs with � < 1 should
also display cooling spectra with photon indices �3/2 below
�pk.

Borgonovo & Ryde (2001) find several GRBs and many
pulses in the BATSE sample with statistically significant val-
ues of � less than unity. These GRBs, however, preceded the
afterglow era. Of those GRBs that have measured beaming
breaks (see Table 1 in Bloom et al. 2003), only GRB 990123
has sufficiently bright BATSE data to provide a data point for
such a correlation. GRB 990123 has not yet been analyzed to
give �, while analysis of BeppoSAX data is in progress (F. Ryde
2004, private communication).

Such a model for the f�pk /�pk relationship would explain why
� is approximately constant for different pulses within a GRB,
provided that the opening angle of the GRB jet remains the
same throughout the period of activity of the GRB engine.

The adiabatic/synchrotron model would not, however, ex-
plain pulses with 2P �P 3. There are many such pulses in the
Borgonovo & Ryde (2001) sample, although generally with
large error bars. If analyses of BeppoSAX or Swift data reveal
such GRBs, then another explanation is required. One possi-
bility is that GRB pulses are due to the interactions of a single
impulsive blast wave with inhomogeneities in the surrounding
medium. This version of the external shock model for the
prompt phase can be much more efficient than an internal shell
model (Dermer & Mitman 1999, 2004) and permits quantita-
tive studies of the statistics of BATSE GRBs (Böttcher &
Dermer 2000; see Zhang & Mészáros 2004 for a review of the
internal/external controversy).

Predictions for the f�pk=�pk relationship in an external shock
model (Dermer et al. 1999b) can be derived by adapting the
equations for blast-wave deceleration in a uniform medium
with � ¼ �0= 1þ x=xdð Þg½ �, where �0 is the initial Lorentz
factor, xd is the deceleration distance, and g is the radiative
index (g ¼ 3=2 and 3 for an adiabatic and a fully radiative blast
wave, respectively). In the deceleration phase, x / t1=ð2gþ1Þ ,
and therefore � / t�g=ð2gþ1Þ. In this model, �pk / �B�2pk and
f�pk / �2B2�2pk, where �pk / �4 / t�4g=ð2gþ1Þ in the slow-
cooling regime and �pk / (x�)�1 / t�2=ð2gþ1Þ in the fast-
cooling regime. Thus, f�pk /�pk / B�.

In the slow-cooling regime, �pk / �4 / t�4g=ð2gþ1Þ and f�pk/
�
3=2
pk . In the fast-cooling regime, �pk / t�2=ð2gþ1Þ and f�pk/ �1þg

pk
.

In the slow-cooling and fast-cooling regimes, therefore, values
of �sc ¼ 3=2 and �fc ¼ 1þ g, respectively, are predicted. Pro-
vided that the surrounding medium is uniform (which can be

inferred from afterglow modeling, though at a larger distance
scale), the slow-cooling result implies a definite value of �sc ¼
3=2 for fast-rise, smooth-decay light curves when spectral
analysis demonstrates that the GRB evolves in the slow-cooling
regime. For GRBs in fast-cooling regime, this estimate implies
that 5=2 < �fc < 4, and in these cases cooling spectra should
be apparent. Further work is needed to extend the results to
radial density gradients of the circumburst medium and to
verify that these relations hold for deceleration in small density
inhomogeneities that form GRB pulses in the external shock
model.

5. SUMMARY

A simple kinematic model for GRB colliding shells has
been constructed that provides a framework for analyzing
radiative processes in a simplified geometry of a thin or thick
shell traveling at relativistic speeds. The relationship between
observed flux and comoving photon energy density for a
given value of � has been studied, showing that the curvature
limit yields the smallest value of the product u00�t 0. This
result can then be used to deduce conservative lower limits
on bulk Lorentz factors derived from the condition of ��
transparency.

The kinematic model predicts the curvature relationship
f�pk / ��pk, with � ¼ 3, at late times in GRB pulses. Equiva-
lently, curvature effects imply that f�(t) / t�3þa and �pk / t�1.
BATSE data for GRB pulses do not display the curvature re-
lationship in most cases (Borgonovo & Ryde 2001), suggesting
that the physics of pulse formation is dominated by other
effects. A simple model for joint evolution of f�pk and �pk that
takes into account adiabatic and synchrotron losses implies that
1=2 < � < 2 and that � � 0:5 only when the shell undergoes
three-dimensional expansion and the electrons that produce
the emission near �pk are rapidly cooling through synchrotron
losses. Spectral analysis of Swift data and correlations of � with
times of the beaming breaks in optical afterglow light curves
can test this prediction. Such a correlation would validate an
adiabatic/synchrotron model for GRB prompt radiation, relate
properties of the prompt phase with the afterglow, and provide
key insights into the properties of GRB jets.

Another possibility is that the f�pk / ��pk relationship is
formed by external shock processes, and a simple derivation of
� was given for blast-wave deceleration in a uniform sur-
rounding medium. Analysis of prompt data has the potential to
test the external shock model, although complications regard-
ing density gradients and inhomogeneities in the circumburst
medium must be considered in more detail.

A final possibility is that jet structure produces the measured
relationship between f�pk and �pk. The validity of a universal
jet model will be tested by determining whether observed
values of � can derive from the proposed angle dependence.
In the meantime, comparing the predictions of the adiabatic/
synchrotron and external shock models with time-resolved
spectroscopy of GRB pulses and afterglows has the potential to
rule out or validate these models.

I thank Markus Böttcher, Felix Ryde, and the anonymous
referee for valuable comments. This work is supported by the
Office of Naval Research and NASA GLAST Science Investi-
gation grant DPR S-13756G.
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APPENDIX A

RELATIONS AND ESTIMATES

First we relate the total energy in photons between the comoving and stationary frames. The differential number of photons
N� ��; ��ð Þ per unit energy and solid angle transforms as N� ��; ��ð Þ ¼ 	DN

0 �0; �0ð Þ, as is easily seen by calculating the Jacobian
of the transformation or by noting that ��1 dN=d� d� 	 ��1N �; �ð Þ is an invariant. For an isotropic, monochromatic photon
spectrum in the comoving frame, N 0 �0; �0ð Þ ¼ N0	 �0 � �00

� �
=4�, and the total photon energy in the comoving frame is just

E 0
0 ¼ N0�

0
0 (in units of the electron rest mass). The differential photon spectrum in the stationary frame is therefore N� ��; ��ð Þ ¼

	N0	 ��=	D � �00
� �

=4� ¼ 	2DN0	 �� � 	D�
0
0

� �
=4�, so that

E� ¼
I

d��

Z 1

0

d�� ��N� ��; ��ð Þ ¼ N0�
0
0

2

Z 1

�1

d� 	3D ¼ �E 0: ðA1Þ

This result is obvious by noting the symmetry of the transformation equation �� ¼ ��0 1þ 
�0ð Þ with respect to �0.
Because �E ¼ L=4�d2L, by definition of the luminosity distance dL, the fluence ’ ¼ �Ehti ¼ L�hti=4�d2L ¼ L�ht�i(1þ z)=4�d2L,

where hti and ht�i are the times of reception and emission in the observer and stationary frame, respectively. Using equation (A1)
gives

’ ¼ �E 0

4�d2L
(1þ z): ðA2Þ

This expression only holds when the emission is isotropic in the comoving frame.
A simple estimate relating comoving energy density u00 with energy flux �E is obtained by noting that the stationary frame

luminosity of a blast wave is given by L� ¼ dE�=dt� ¼ �2L0, where L0 ¼ dE 0=dt 0 ffi u004�r
2�r 0= �r 0=cð Þ. Thus, �E ffi cr 2u00�

2=d2L,
giving equation (2). If the variability is produced by curvature effects according to equation (1), then

�E ¼ 4c3u00�
6t2var

(1þ z)2d2L
: ðA3Þ

Note that the same basic dependence, though with � replaced by 	, is derived for a (comoving) spherical blob geometry. In this
case, �E ffi 	4DL

0=4�d2L, and L0 ffi 4�r 02b cu00=3, with blob radius r 0b ¼ c	Dtvar=(1þ z).

APPENDIX B

ANALYTIC DERIVATION OF THE f�pk (t) VERSUS �pk RELATION

Starting with equation (5), we approximate

�0j0 �0; r; t 0ð Þ ¼ K�0a	 r 0 � r0ð Þ	 t 0 � t 00
� �

H �0; �0l ; �0u
� �

: ðB1Þ

Normalizing to the comoving energy E 0
p of a pulse implies that

K ¼
aE 0

p

2�
�
1� �j

�
r20 �0au � �0al
� � : ðB2Þ

The integrals can now be performed. First note the subtlety that dr=dr 0j j ¼ 	D, whereas�r 0 ¼ ��r in equation (6). Imposing the
limits over r in equation (9) recovers the 	D factor in the numerical integration of equation (11) performed in x 2. Further noting
that t 00 ¼ r0=
�c, and defining �z ¼ (1þ z)�, we obtain

f�(t) ¼
Kcr0�

a
z

2d 2
L


�ctz
r0

� ��3þa

H

ctz
r0

; max 1� 
;
�0l
��z

� �
; min 1� 
�j;

�0u
��z

� �� 	
/ �az t

�3þa
z : ðB3Þ

The final proportionality holds provided that tz is in the range satisfying the Heaviside function. When a ¼ 0, corresponding
to emission at the peak of the �F� spectrum, f�pk (t) / t�3

z / �3pk. This follows because �pk / t�1
z , as is apparent by inspecting the

limits in the Heaviside function (
ctz=r0 / �0u=��z, so that �pk / �0pk=tz).
The validity of equation (B3) can be checked by deriving the fluence ’ ¼

R1
0

d�
R1
�1 dt f�(t)=�, using the normalization in

equation (B2), from which equation (A2) is recovered.
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APPENDIX C

RELATIONSHIP BETWEEN f�(t) AND u00 IN THE CURVATURE LIMIT

We now derive an approximate analytic expression for a radiation pulse in the curvature limit. Substituting equations (6)
and (7) for the comoving spectral energy density into equation (5), the r-integral can be approximately solved by lettingR
dr r 2 : : :ð Þ=�r 0 ! r20 dr=dr

0j j : : :ð Þ ffi 	Dr
2
0 : : :ð Þ. In the limit �3 1, one obtains

f�(t) ¼
4cu00r

2
0�

2

d2L

�=�pk;0
� �a
3� a

Qa þ
�=�pk;0
� �b
3� b

Qb

" #
; ðC1Þ

where

Qa ¼ max 1;
u

1þ �

� �� 	�3þa

� min 4�2; u;
�pk;0
�


 �h i�3þa

; ðC2Þ

Qb ¼ max 1;
u

1þ �
;
�pk;0
�

� �� 	�3þb

� min 4�2; u
� �� ��3þb

; ðC3Þ

u 	 2�2ctz=r0, � 	 �c�t 0=r0 ¼ �t=�r , and we set �j ¼ �1 [otherwise the terms 4�2 are replaced with 2�2(1� 
�j) in eqs. (C2)
and (C3) above]. The �F� peak energy observed at the start of the pulse is denoted by �pk;0 ¼ 2��0pk;0=(1þ z).

By examining the limits in equation (C2), one finds that

Qa ¼

1� u�3þa; 1 � u � �pk;0
�

� 1þ �;

1� �pk;0
�


 ��3þa

; 1 � �pk;0
�

� u � 1þ �;

u

1þ �

� ��3þa

� �pk;0
�


 ��3þa

; 1 � u

1þ �
� �pk;0

�
� u;

u

1þ �

� ��3þa

� u�3þa; 1þ � � u � �pk;0
�

;

8>>>>>>>>>>><
>>>>>>>>>>>:

ðC4Þ

with related expressions for Qb. In the limit �T1, corresponding to the curvature limit where variability arises principally from
curvature effects, the fourth relation in equation (C4) applies, giving

f� ffi
4cu00r

2
0�

2

d 2
L

�
�

�pk;0

� �a

u�3þaH
�pk;0
u

� �

 �

þ �

�pk;0

� �b

u�3þbH �� �pk;0
u


 �" #
: ðC5Þ

This expression applies equally to the late-time asymptote t3 (1þ z)�t 0=2�. At the peak of the �F� spectrum, a ¼ 0, and

f�pk ¼
4cu00r

2
0�

2

d 2
L

�
2�2ctz

r0

� ��3

; ðC6Þ

recovering the dependence derived in equation (B3). Note that because r0 / �r, f� / �r�t. Equation (C5) relates f�(t) and u00 in the
curvature limit.

APPENDIX D

SEARCHING FOR CURVATURE EFFECTS IN GRB PULSES

If the GRB spectral flux is described by a power-law spectrum with �F� index a, then curvature effects in the curvature limit
would produce the behavior

f�(t) / t�3þa
z : ðD1Þ

The FWHM duration of the curvature spectrum in such a regime is given by t1=2 ¼
�
21=ð3�aÞ � 1

�
tpk , where tpk ¼ (1þ z)r0=2�

2c.
Hence, the expression r0 ¼ 2�2ctFWHM=

��
21=ð3�aÞ � 1

�
(1þ z)

�
relates the blast-wave radius r0 to �, given the observables z and

tFWHM—provided that the pulse shape is determined by curvature effects. Curvature effects also dictate that f�pk / �3pk. By examin-
ing the variation of intensity as a function of �pk for two GRBs, Soderberg & Fenimore (2001) searched for the signature
of shell curvature using an expression analogous to equation (D1), although without success. In this case, f�pk / �3�haþbi, where
haþ bi is the mean index of the photon flux within the interval containing �pk used to measure f�pk (to first order, haþ bi ¼ 0).
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Equation (C6) can be used to derive an expression relating �pk to the photon fluence ’ in the curvature limit. One simply obtains

�pk
�pk;0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ’

’tot

r
; ðD2Þ

where �pk;0 refers to the value of �pk at the beginning of the pulse and ’tot refers to the total fluence. This expression represents an
alternative analytic form to the relation �pk=�pk;0 ¼ exp �’=’totð Þ proposed by Liang & Kargatis (1996) and also derives from
equation (C5), provided that a and b are independent of time. A more general fitting function is obtained by raising the right-hand
side of equation (D2) to an arbitrary power.

When equation (D2) deviates from observational data, as will often be the case since the approximations leading to the curvature
pulse are rarely expected to be realized in GRB colliding shells, then curvature effects can still be sought by numerically evaluating
equations (11) or (C1) to obtain more general �pk-’ relations. These equations can also be used to fit pulse profiles directly. Such an
approach would place the phenomenological treatments of Kocevski et al. (2003) and Ryde et al. (2003) on a physical basis and
can be extended to treat realistic electron injection and loss processes. Such results can then be compared with predictions of the
external shock models for the prompt phase.
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